

LA-UR-21-29821

Approved for public release; distribution is unlimited.

Title: Searching for New Physics at the Intensity Frontier at the EIC:

Project Visit

Author(s): Lee, Christopher

Lee, Christopher Mereghetti, Emanuele

Yan, Bin

Intended for: LDRD Project Visit

Issued: 2021-10-05 (rev.1)

Searching for New Physics at the Intensity Frontier at the EIC

LDRD Project 20200775PRD4

PI: Christopher Lee

Co-PI: Emanuele Mereghetti

PD: Bin Yan

T-2

PRD Project visit, October 5, 2021

The Electron-Ion Collider: a new frontier

Electron-Ion Collider: the new frontier in high-energy nuclear physics

- To be built by 2030 at BNL to be the world's most powerful microscope into proton and nuclear structure, with most intense polarized electron & hadron beams: 3-D tomography of the proton, new states of matter, origin of proton spin and mass.
- ► LANL a leading contributor to the Jets & Heavy Quarks program at EIC, both theory and detector development.
 - Focused on probing hadronization in both cold and hot dense nuclear matter: frontiers of QCD

Proposed Forward Silicon Tracking (FST)

Au

The Electron-Ion Collider: a new capability

This project:

- Work towards a new capability for the EIC: ability to search for new physics beyond the Standard Model
- Unprecedented luminosity to search for rare processes, in particular charged lepton flavor violation, e.g. $e \rightarrow \tau$
- Such CLFV interactions are generated in models of new physics that give rise to neutrino masses and mixings, and may explain origin of matter-antimatter asymmetry in early universe
 - also topics of significant investment at LANL
 (e.g. neutrino & neutron experiments and theory)

- Analyze EIC discovery potential using most general framework of BSM physics: SM Effective Field Theory (SMEFT)
- Develop best strategies to identify τ decay products, measurements on associated hadrons with least SM background and best discriminating power for different CLFV mechanisms

EIC physics timeline

The time to influence the EIC physics program and detector design & development is now:

- LANL T and P-Div teams authored several sections of the YR on jets & heavy quarks
- This project's paper on CLFV at EIC was cited in the YR section on electroweak & BSM physics, which is not yet heavily developed and has room to grow

Goals & Accomplishments of this project

Original proposal goals:

- Propose and compute observables that can distinguish CLFV signal from SM backgrounds
 - ▶ Use SMEFT and QCD theory and Monte Carlo simulation packages for QCD showering, hadronization, and detector effects
- Use SMEFT to compare EIC sensitivity to CLFV to other types of searches where same interactions may produce CLFV effects, e.g. B decays, τ decays
- Discovering BSM physics @ EIC would be one of its most exciting and transformational outcomes possible.

Achieved:

 Published 108-page paper in Journal of High-Energy Physics, was immediately accepted for publication

- V. Cirigliano, K. Fuyuto, C. Lee, E. Mereghetti, **B. Yan, JHEP 03 (2021) 156**
 - Most comprehensive study of CLFV in SMEFT to date, most complete comparison of all available & projected experimental constraints
 - ► Key outcome: EIC may have superior sensitivity to CLFV operators probing heavy quark content of proton or final-state jets ⇒ synergy with QCD jets & heavy quark program
 - Based so far only on leading-order QCD perturbation theory, however.

Goals & Accomplishments of this project

Extended goals into 2nd year (FY22):

- Compute next-to-leading order corrections in QCD which may be important in mixing different SMEFT operator contributions to CLFV processes
- Explore sensitivity of EIC (at leading order in QCD) to **lepton-number-violating** (LNV) processes such as $e^- + p \rightarrow \tau^+ + X$ which are connected to nature of neutrino masses (Majorana or Dirac) also to be tested in double beta decay experiments
- Explore other ways to test boundaries of SM physics with the EIC

Achieved so far:

▶ Postdoc Bin Yan wrote Letter with external collaborators, accepted in Phys. Lett. B, proposing measurements at the EIC that can measure precisely the coupling of Z bosons to heavy b quarks for possible signs of new physics beyond the SM and possibly resolve the anomaly in these couplings measured at the LEP and SLC e⁺e⁻ colliders

B. Yan, Z. Yu, C.-P. Yuan, *The anomalous* $Zb\bar{b}$ *coupling at HERA and the EIC*, Phys. Lett. B, in press (2021)

Postdoc Development

Background:

- Dr. Bin Yan comes with high recommendations from PhD program at Peking University and postdoc at Michigan State
- Supported FY20 by DOE-funded projects on Nuclear Theory in T-2 and Early Career Award of C. Lee on Precision QCD
 - ▶ Bin is collaborating on large project to determine strong coupling in QCD to high precision using data from LEP e^+e^- collider at CERN.
- Won Director's Postdoctoral Fellowship for FY21-22 to work on new physics at EIC
 - In FY22 continues to be partially supported by DOE projects on QCD.

Breadth:

- Has engaged with other colleagues in T-2 to achieve goals of this PRD project:
 V. Cirigliano & K. Fuyuto
- Maintained active external collaborations with existing and new collaborators on perturbative QCD, tests of SM and BSM particles and couplings at LHC, EIC, and new linear (e^+e^-) colliders
 - ▶ 6 papers published or submitted to peer-reviewed journals outside of this PRD project
 - Over 20 invited talks (mostly virtual during Covid) all over the world

Postdoc Development

Future prospects:

- Follow-on proposal: our work on CLFV @ EIC motivated and comprised a major component of a proposal to DOE's call early this year for proposal on ML/AI applications for EIC or other future colliders. (unfortunately not funded)
 - NMC-supported collaboration with NMSU to carry forward some exploratory research to strengthen proposal for next call
- ► The outcome of this PRD research also strengthens a potential ER proposal building on this topic for FY23, to expand LANL's expertise and leadership on jets & heavy quarks at EIC to a BSM physics program
- Bin has been invited to interview for faculty positions at several universities:
 - Beijing Normal U.
 U. Regensburg
 BeiHang U.
 NanKai U.
 Beijing Institute of Technology
 - Beijing Institute of Technology
 - Awaiting outcome, and new opportunities to apply this Fall/Winter

Searching for New Physics at the Intensity Frontier at the EIC

Bin Yan Los Alamos National Laboratory

V. Cirigliano, K. Fuyuto, C. Lee, E. Mereghetti and Bin Yan, JHEP 03 (2021) 256

Bin Yan, Zhite Yu and C.-P. Yuan, arxiv 2107.02134 (Accepted by PLB)

Charged Lepton Flavor Violation @ EIC

V. Cirigliano, K. Fuyuto, C. Lee, E. Mereghetti and Bin Yan, JHEP 03 (2021) 256

Charged Lepton Flavor Violation

Lepton Flavor is not conserved:

Neutrino Oscillations

Charged Lepton Flavor Violation (CLFV):

$$BR \sim \left(\frac{m_{\nu}}{m_W}\right)^2 \sim 10^{-44}$$

S. Petcov, '77; W. Marciano and A. Sanda, '77

- A. CLFV is sensitive to the NP
- B. CLFV could be related to the neutrino mass generation mechanism;

Tree level or Loop level

For example: Two loop neutrino mass model

QHC, SLC, E. Ma, Bin Yan, DMZ, PLB779 (2018)430-435

CLFV and EFT

Four types operators:

vector/axial currents

dipole

Yukawa

four-fermion

For example:

$$\mathcal{L} = -\frac{g}{2c_W} Z_{\mu} \left[\left(c_{L\varphi}^{(1)} + c_{L\varphi}^{(3)} \right)_{\tau e} \bar{\tau}_L \gamma^{\mu} e_L + c_{e\varphi} \bar{\tau}_R \gamma^{\mu} e_R \right]$$
$$-\frac{e}{2v} \left[\Gamma_{\gamma}^e \right]_{\tau e} \bar{\tau}_L \sigma^{\mu\nu} e_R F_{\mu\nu} - \frac{g}{2c_W v} \left[\Gamma_Z^e \right]_{\tau e} \bar{\tau}_L \sigma^{\mu\nu} e_R Z_{\mu\nu}$$

Four-fermion operatrors:

$$\frac{\text{Four-fermion operatrors:}}{\text{we assume the generic quark flavor structures}} \quad [C_{Ld}]_{\tau e} = \begin{pmatrix} \begin{bmatrix} C_{Ld} \end{bmatrix}_{dd} & \begin{bmatrix} C_{Ld} \end{bmatrix}_{ds} & \begin{bmatrix} C_{Ld} \end{bmatrix}_{db} \\ \begin{bmatrix} C_{Ld} \end{bmatrix}_{sd} & \begin{bmatrix} C_{Ld} \end{bmatrix}_{ss} & \begin{bmatrix} C_{Ld} \end{bmatrix}_{sb} \\ \begin{bmatrix} C_{Ld} \end{bmatrix}_{bd} & \begin{bmatrix} C_{Ld} \end{bmatrix}_{bs} & \begin{bmatrix} C_{Ld} \end{bmatrix}_{bb} \end{pmatrix}$$

Charged Lepton Flavor Violation

Collider analysis @ EIC

$$(1)e^-p \to \tau^- X \to e^- \bar{\nu}_e \nu_\tau X;$$

$$(2)e^{-}p \to \tau^{-}X \to \mu^{-}\bar{\nu}_{\mu}\nu_{\tau}X;$$

$$(3)e^-p \to \tau^- X \to \nu_\tau X_h X$$

Background: SM DIS production

The electron and hadronic decay channels would be challenge due to the large backgrounds;

Based on Pythia8+Delphes

$$p_T^{\mu} > 10 \text{ GeV}, \quad p_T^{j1} > 20 \text{ GeV}.$$

$$E_T > 15 \text{ GeV}, \quad |\eta_{\mu,j1}| < 3.$$

Background free process

The sensitivity of CLFV

Dipole, Yukawa and Vector/Axial vector current

The sensitivity of CLFV

Four-Fermion operators

The limits for the heavy quark components at the EIC are comparable to the LHC and low energy data

The sensitivity of CLFV

Global analysis:

Scenario	Operators	
A	$c_{L\varphi}^{(1,3)}, [C_{LQ,U}]_{uu}, [C_{LQ,D}]_{dd,ss}, [C_{Lu}]_{uu}, [C_{Ld}]_{dd,ss}$	
В	$c_{L\varphi}^{(1,3)}, [C_{LQ,D}]_{dd,ss,bb}, [C_{Ld}]_{dd,ss,bb}$	

The anomalous Zbb couplings @ EIC

Bin Yan, Zhite Yu and C.-P. Yuan, arxiv 2107.02134 (Accepted by PLB)

Z boson couplings

Electroweak symmetry breaking

Massive gauge bosons: W and Z

Lepton colliders: LEP and SLAC

Probing the Z boson couplings are very important for us to test the Standard Model

Hadron colliders: Tevatron and LHC

Status of Zbb couplings

	measured value	SM prediction
R_b^0	0.21629 ± 0.00066	0.21578 ± 0.00011
$A_{ m FB}^{0,b}$	0.0992 ± 0.0016	0.1032 ± 0.0004
\mathcal{A}_b	0.923 ± 0.020	0.93463 ± 0.00004

Gfitter Group: EPJC74 (2014)3046 PDG2020

$$R_b = \frac{\Gamma(Z \to b\bar{b})}{\sum_q \Gamma(Z \to q\bar{q})}$$

2.1σ deviation with SM prediction

D. Choudhury, T. M. P. Tait, C.E.M. Wagner, PRD 65(2002)053002

$$\mathcal{L} = -\frac{g}{c_W} Z_{\mu} (g_{Lb} \bar{b}_L \gamma^{\mu} b_L + g_{Rb} \bar{b}_R \gamma^{\mu} b_R)$$

$$g_{Lb}^{SM} = 0.42, \quad g_{Rb}^{SM} = -0.077$$

$$g_{Lb} < 0$$
 was Excluded

 g_{Rb} Could be positive or negative

Status of Zbb couplings

A. How to break the degeneracy of the right-handed Zbb coupling?

New experiments: CEPC (e+e- collider), etc.

B. How to explain the LEP data?

New Physics?

Many new physics models

e.g. Custodial symmetry O(3) + heavy quark

K. Agashe, R. Contino, L. Rold, A. Pomarol, 2006'

Statistical Fluctuation or Systematic error?

New experiments: e.g. CEPC

So...

Should we just wait for the next generation lepton colliders?

Any possibility from ep collider (EIC)?

Zbb couplings @EIC

Single-Spin Asymmetry (SSA):

$$A_e^b = \frac{\sigma_{b,+}^{\text{tot}} - \sigma_{b,-}^{\text{tot}}}{\sigma_{b,+}^{\text{tot}} + \sigma_{b,-}^{\text{tot}}}$$

+/-: right/left-handed lepton

- 1. Photon-only diagrams will cancel in SSA
- 2. Leading contribution: γ -Z interference
- 3. Only sensitive to the vector component of the Zbb coupling

Zbb couplings @EIC

$$E_{\rm cm} = 141 \; {\rm GeV}, P_e = 0.7$$

(i)
$$\epsilon_q^b = 0.001$$
, $\epsilon_c^b = 0.03$, $\epsilon_b = 0.7$;

$$\epsilon_c^b = 0.03,$$

$$\epsilon_b = 0.7;$$

(ii)
$$\epsilon_q^b = 0.01, \qquad \epsilon_c^b = 0.2, \qquad \epsilon_b = 0.5.$$

$$\epsilon_c^b = 0.2,$$

$$\epsilon_b = 0.5$$
.

The limits for the Zbb couplings could be comparable to the LEP data

New Physics @EIC

EIC is an important machine for the new physics searches:

- 1. Lepton number violation?
- 2. Axion-like particle?

$$\begin{array}{cccc}
e^{-} & e^{-} \\
\gamma & & & \\
\gamma & & & \\
\hline
 & & & \\
q & & & q
\end{array}$$

3. Z boson couplings?

Jet charge + single spin asymmetry observable

4. Triple gauge boson couplings?

Conclusion

- ► In this PRD project Dr. Bin Yan and collaborators have exhibited the potential power of the EIC to become not only a new frontier in QCD but also in **searches for new physics beyond the SM**
 - Competitive or superior sensitivity to LHC and other searches for charged lepton flavor violation especially in interactions involving heavy quarks in proton
 - ▶ Potential sensitivity to Z boson couplings to heavy b quarks sufficient to resolve long-standing anomaly between LEP/SLC measurements and SM predictions
- Should motivate further investment by LANL and national nuclear physics community to strengthen ties with high-energy physics to maximize the impact of the EIC
- Establishes Dr. Yan as a leading young expert to be a future leader in this effort internationally